离子“非牛顿流体”:科学家在电池技术方面有了惊人发现

bjylkjyxgs4个月前新闻资讯112
摘要:

从原子层面来看,离子在电池电解液中的流动看似顺畅,实际上却相当复杂。固态电池通过离子在两个电极之间来回移动来储存和释放电荷。从我们通常的角度来看,离子在电池的固态电解质中流动,就像一条平缓的小溪。但从原子尺度来看,这种平滑的流动只是一种假象:在稳定电压的推动下,单个离子在电解质宽敞的原子晶格中无规律地从一个空隙跳到另一个空隙。这些跳跃很难预测,触发和检测也是一项挑战。

The-Flow-of-Ions-Between-Battery-Electrodes-Graphic-scaled.webp

近距离观察,电池电极之间的离子流实际上是一系列原子级的无规律跳跃。在 SLAC 国家加速器实验室的激光实验室中进行的实验表明,当受到电压冲击时,大多数离子会短暂地向后跳回它们之前的位置,然后再继续它们通常的无规律旅行--这是它们在某种意义上记得自己刚刚去过的地方的第一个迹象。图片来源:Greg Stewart/SLAC 国家加速器实验室加速器实验室

现在,在首次同类研究中,研究人员用激光脉冲照射跳动的离子,给它们施加电压。出乎他们意料的是,大多数离子短暂地逆转了方向,回到了它们之前的位置,然后又开始了它们通常的、更加随机的旅行。这是第一个迹象表明,离子在某种意义上记得它们刚刚去过的地方。

来自美国能源部SLAC国家加速器实验室、斯坦福大学、牛津大学和纽卡斯尔大学的研究小组在1月24日出版的《自然》杂志上介绍了他们的发现。

离子“非牛顿流体”

牛津大学博士后研究员 Andrey D. Poletayev 说:"你可以把离子想象成玉米淀粉和水的混合物。这就是我们经常听到的非牛顿流体,如果我们轻轻推动这种玉米淀粉混合物,它就会像液体一样流动;但如果我们猛击它,它就会变成固体。电池中的离子就像电子玉米淀粉。它们通过向后移动来抵御激光的猛烈震动。"

正如波列塔耶夫所说,离子的"模糊记忆"仅持续几十亿分之一秒。但知道它的存在将有助于科学家首次预测行进中的离子下一步会做什么--这是发现和开发新材料的一个重要考虑因素。

A-Jolt-Reveals-a-Brief-Flash-of-Memory-Among-Battery-Ions-scaled.jpg

由 SLAC 首席科学家马蒂亚斯-霍夫曼(Matthias C. Hoffmann)制造的激光仪器,用于在固态电池电解质中用电压冲击震荡离子的实验。令研究人员惊讶的是,大多数离子的反应是扭转方向,跳到它们之前的位置,然后再回到它们通常的不规则路径上--这是第一个迹象,表明它们在某种意义上记得自己曾经去过的地方。图片来源:Andrey D. Poletayev/牛津大学

专为速度设计的电解液

在 SLAC 激光实验室进行的实验中,研究人员使用了一种固体电解质的透明薄晶体,这种电解质属于一种被称为β-铝的材料。这些材料是迄今发现的第一批高导电性电解质。它们含有微小的通道,跳跃离子可以在其中快速移动,而且具有比液态电解质更安全的优点。β-铝可用于固态电池、钠硫电池和电化学电池。

当离子在β-氧化铝通道中跳跃时,研究人员用长度仅为万亿分之一秒的激光脉冲照射它们,然后测量从电解质中返回的光线。

通过改变激光脉冲和测量之间的时间,他们能够精确地确定离子的速度和偏好方向在激光冲击后几兆分之一秒内的变化情况。

怪异和不寻常

领导这项研究的斯坦福材料与能源科学研究所(SIMES)研究员、SLAC 和斯坦福大学教授亚伦-林登伯格(Aaron Lindenberg)说:"离子跳跃过程中出现了多种奇怪而不寻常的现象。当我们施加一种使电解质摇晃的力时,离子不会像大多数材料那样立即做出反应。离子可能会在那里坐一会儿,突然跳起来,然后又在那里坐一会儿。你可能需要等待一段时间,然后突然发生巨大的位移。因此,这个过程中存在着随机因素,这就给这些实验带来了困难。"

研究人员说,在此之前,人们一直认为离子的行进方式是典型的"随机行走":它们推搡、碰撞、跌跌撞撞,就像喝醉酒的人踉踉跄跄地走在人行道上,但最终会以一种在旁观者看来是故意的方式到达某个目的地。或者想想臭鼬向满屋子的人喷出恶臭的喷雾;喷雾中的分子随机地打闹、碰撞,但很快就会到达你的鼻子。

波列塔耶夫说:"当谈到跳跃离子时,在原子尺度上这幅图是错误的,但这并不是得出这一结论的人的错。只是长期以来,研究人员一直在用宏观工具研究离子传输,他们无法观察到我们在这项研究中看到的现象。"

他说,这里的原子尺度发现"将有助于弥合我们可以在计算机中建模的原子运动与材料宏观性能之间的差距,而这种差距使我们的研究变得如此复杂"。

编译来源:ScitechDaily

访问:

Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN

相关文章

科学简单点:什么是等离子体?

科学简单点:什么是等离子体?

摘要:什么是等离子?等离子体是物质的四种基本状态之一,与气体、液体和固体并列。虽然大多数人在日常生活中不会像考虑其他物质状态那样去考虑等离子体,但等离子体却占宇宙中可见物质的 99%。这包括在外太空中...

天文学家在系外行星WASP-76b上首次探测到了类似彩虹的光环

天文学家在系外行星WASP-76b上首次探测到了类似彩虹的光环

摘要:欧空局灵敏的"Cheops"外行星特征卫星以及欧空局和美国国家航空航天局的其他几项任务提供的数据表明,一种微妙的光环现象正从637光年外的超高温气体巨行星WASP-76b的地...

欧几里德任务在新发布的五张图像中揭示了隐藏的暗宇宙

欧几里德任务在新发布的五张图像中揭示了隐藏的暗宇宙

摘要:欧几里得是欧空局在美国国家航空航天局支持下执行的一项任务,旨在绘制天空地图并研究暗物质和暗能量。它的新图像和数据揭示了包括自由浮游行星和褐矮星在内的重大科学发现,增进了我们对宇宙的了解。 Me...

欧空局捕捉卫星解体过程的实时数据 支持更安全、更可持续的卫星报废方案

欧空局捕捉卫星解体过程的实时数据 支持更安全、更可持续的卫星报废方案

摘要:2024年9月8日,构成欧空局Cluster任务的四颗卫星中的第一颗将在南太平洋无人区上空重返地球大气层。这标志着这项历史性任务的结束,距离它被送入太空测量地球磁场环境已经过去了 24 年多。虽...

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀

摘要:麻省理工学院研究人员开发的一种新型聚合物在 DNA 储存方面取得了重大进展,它能在室温下保存 DNA,而无需传统冷冻方法所需的能源成本。这种技术不仅能有效地存储大量数据,还能确保 DNA 易于检...

新研究显示H5N1禽流感病毒的一种亚型已经初步拥有通过空气传播的能力

新研究显示H5N1禽流感病毒的一种亚型已经初步拥有通过空气传播的能力

摘要:新的研究结果表明,H5N1 流感病毒的一种毒株拥有在空气中传播的能力,但暂时这种能力微乎其微。3 月,美国报告首次在奶牛中发现高致病性 H5N1 禽流感,到 5 月,疫情已蔓延到 9 个州。牛之...